### Add the missing Product function

Code
Diff
• ``````from math import prod
``````
• from functools import reduce
• from operator import __mul__
• def prod(numbers):
• return reduce(__mul__, numbers) if numbers else 0
• from math import prod

### Add the missing Product function

Code
Diff
• ``````from functools import reduce
from operator import __mul__
def prod(numbers):
return reduce(__mul__, numbers) if numbers else 0``````
• from functools import reduce
• from operator import __mul__
• def prod(numbers):
• if numbers == []: return 0
• product = 1
• for number in numbers:
• product *= number
• return product
• return reduce(__mul__, numbers) if numbers else 0

### Unique Roots

A polynomial can be written in the form ax^n + bx^n-1 +.. z
Degree will be <=8.

Return an array of the unique real roots.

e.g. a=1, b=3, c=2, d=0 --> `[0, -1, -2]`

``````import numpy
import re
def real_solutions(a='x',b='x',c='x',d='x',e='x',f='x',g='x',h='x'):
arr = [x for x in [a,b,c,d,e,f,g,h] if isinstance(x,int)]
b = numpy.roots(arr).tolist()
return list(dict.fromkeys([round(x.real,5) for x in b if abs(x.imag)<1e-5]))``````